Using CIM to Support Network Model Management Inside the Utility

European CIM User Group Meeting
Gdynia, Poland
3 June, 2015

Pat Brown, EPRI
Jay Britton, Britton Consulting
Transmission Network Model Management
In Support of Reliability

• Every tool requires its own network model, in its own format

• Every tool has its own users and maintainers

• Silos are both technical and organizational
Transmission Network Model Management

Technical & Organizational Silos

• Silos cause:
 – Duplicate effort
 – Synchronization problems
 – Consistency issues
 – “Trapped” data

Lots of energy invested in unproductive work
Errors can go unrecognized
Transmission Network Model Management

Industry Landscape

- Silos at multiple levels – TSO, ISO, Interconnect
Transmission Network Model Management

Encouraging Developments

- Consolidated model management
 - ERCOT model management implementation
Transmission Network Model Management

Encouraging Developments

• Consolidated model management
 – ERCOT model management implementation
 – Product configuration tools
Transmission Network Model Management
Support from the CIM

• Common Information Model (CIM) as foundation
 – Began as operational model in early 1990s
 – Support EMS components from different vendors
 – Became IEC Standard in mid-1990s
 – Understood as basis for semantic model for enterprise integration
 – Network model interoperability tests started in 2000 – more than 15 to-date
 – Planning (bus/branch) model added in 2008
 – Dynamics (transient behavior) model added in 2013
 – Projects, outage and contingency modeling are current topics

Now nearly robust enough to truly support NMM tool integration
Transmission Network Model Management

Existing Situation
Transmission Network Model Management

The NMM Vision — one source for each piece of data
NMM Requirements Overview

- Consolidated model management
 - Utilities ready to implement
 - Real NMM product market niche
NMM Requirements Overview

- Consolidated model management
 - Utilities ready to implement
 - Real NMM product market niche
 - Silos get in the way
NMM Requirements Overview Project

• 2014 Network Model Manager Requirements Overview supplemental
 – Overview of consolidated model management tool requirements
 – Sponsored and created by 8 utilities and 2 vendors
 ▪ TSOs - AEP, BPA, Électricité de France, NationalGrid UK, Oncor
 ▪ ISOs – ISO-NE, MISO, PJM
 ▪ Vendors – Alstom, Siemens/Siemens PTI
 – Results publicly available for free
 – Influence the industry

Accelerate utility interest
Broaden vendor vision
NMM Requirements Overview Project
Use Cases to Identify Requirements
NMM Requirements Overview Project

Use Cases to Identify Requirements
NMM Requirements Overview Project
Use Cases to Identify Requirements

- **Process Group A**: Internal Input to the NMM
 - Enterprise Data Sources
 - Plans
 - Substation As-Built
 - Line Impedance Calculation
 - Line Rating Calculation
 - Circuit Description
 - Transformer Data
 - Generator data
 - GIS
 - Outages
 - Substation Load History

- **Network Model Manager**
 - PNM
 - As-Built Internal
 - As-Built External
 - Plans Internal
 - Plans External
 - Object Registry
 - CM

- **Process Group B**: Exchange with External Entities

- **Process Group C**: Testing & Validation Processes

- **Process Group D**: Exporting Base Cases for Operations and Planning Studies

- **Process Group E**: Input from Cases

- **Network Cases**
 - Validation Cases
 - Import/Export Cases
 - EMS Network Model
 - Outage Studies
 - Planning Base Cases
 - Protection Model
NMM Requirements Overview Project
Publicly Available Deliverable

• “Network Model Manager Technical Market Requirements” (EPRI Product ID 3002003053)
• Available at www.epri.com
NMM Requirements Overview Project

NMM Functional Overview
Model parts are maintained once ... and used in many different study case assemblies.

Unified Grid Model

TSO A

TSO B

TSO W

TSO X

Study Type 1

Study Type 2

Study Type n
WG13 Ref Model for a Network Analysis Case

Physical Network Model Parts Repository

- Full Model Parts
- Incremental Model Parts

Model Part Types:
- EQ
- DY
- SC
- DL
- OP
- GL

Measurement Sources

- Outage Schedules

Energy Forecasts & Schedules

Other External Sources

SSH Model Parts Repository

- Full Model Parts
- Incremental Model Parts

CIM Standard Datasets in a Network Analysis Case

- Topology (TP)
 - TopologyNodes
 - association to conducting equipment
- State Variables (SV)
 - Energized State
 - Island Topology
 - BusVoltage
 - Bus Injections
 - Terminal flows
 - Controls
 - Violations

Device Status Initialization/Edit

Control Setting Initialization/Edit

Monitoring Initialization/Edit

Energy Injection Initialization/Edit

Physical Model Select / Edit

Equipment (EQ)
- Equipment
- Containment
- Connectivity
- Controls
- SIPS
- Equipment Rating
- Normal operations
- Energy allocation

Short Circuit (SC)

Dynamics (DY)

Diagram Layout (DL)

Geo Location (GL)

Normal Operations (OP)

Steady-State Hypothesis (SSH)
- Status
 - Switch status
 - In Service
 - Branch end
 - Tap positions
 - Control settings
 - Voltage regulation
 - Flow regulation
 - SIPS
 - Monitoring
 - Operating limits
 - Other
 - Energy Injections
 - Bulk generation
 - Solar
 - Wind
 - Storage
 - Traditional Load
 - DR
 - etc.

Topography & Network Solution Algorithm

Diagram Layout (DL) Diagram Layout (DL) Diagram Layout (DL)
NMM Requirements Overview Project

NMM Functional Overview

PNM
Physical Network Model Parts Repository
- Internal As-Built
- External As-Built
- Internal plans
- External plans

Object Registry

CM
Case Model Parts Repository

NMM
Network Model Manager

User Interface
Model Navigation & Edit

User Workspaces

CIM
Analysis Applications / Systems

Integration Services

Analysis Applications / Systems
NMM Requirements Overview Project Physical Network Model Requirements

Mission: Support the IEC CIM framework concept for assembling EQ Model Parts

- This is the top layer of the case diagram.
- PN part retrieval is the first step:
 - EQ Model Part selection & loading
 - EQ Project selection & loading
 - Additional PN Model Parts as desired
- Validation against framework specifications
- Optional: built-in and/or locally-written services (simplification, mesh equivalents, etc.)
Mission: Support concurrent modeling activity by multiple users

- Multiple users – each has a private workspace
- Two primary purposes:
 1. To support user browse and edit of Model Parts.
 2. To support assembly of base cases for export.
- Supports functions
 - Standard
 - Custom
- Maintains audit trail of activity
- Supports packaging of actions into stored Procedures.
NMM Requirements Overview Project
User Interface Requirements

Mission: Provide the ability to create and manage Model Parts in NMM

- Directory of NMM stored Model Parts and Projects
- Browse any Model Part in a workspace
 - Graphically via schematics (including autogeneration of schematics)
 - Hierarchical
 - Tabular
 - Property sheets
- Editing to create Projects (including graphical edit of connectivity)
- Review and manage audit trail
- Execute any stored procedure or operation
- Meet all industry security guidelines
Mission: Support the IEC CIM modular concept for assembling network analysis base cases

- Starts from a composed set of PN Model Parts
- A complete SSH must be assembled for the PN extent. This has a number of relatively independent sub-parts:
 - Status of devices
 - Regulation by controls
 - Monitoring limits
 - Energy in and out
- Stored sub-parts may be initialized by:
 - User editing
 - Custom initialization processes from external sources
 - Saved previous sub-parts
Mission: Support integration with NMM without impact to the core NMM product

NMM shall be ‘integration ready’:

- CIM import / export of individual Model Parts and Projects
- CIM import / export of assembled models and cases
- Integration processes can invoke NMM services, such as stored procedures

- Name translation via object registry services
- Consistent approach to transformation to and from external formats
Mission: Assure high quality source material for network analysis

Validation must be supported at the following levels:

• Consistency with standard CIM forms
• Reasonability checks
 • Including the ability to create custom validation logic
• Algorithm based tests
 • Topology processing service
 • Power flow service
• Testing procedures
Mission: support utility extension of the core Canonical Data model without modification of the core NMM product

NMM provides facilities for extending and updating the Model Part schema such that:

• Model Parts in the previous schema are transformed to the new version
• Core product functionality of the NMM adapts to the new schema without modification of the product.
• i.e. The NMM is model driven!
Using CIM to Support Network Model Management Inside the Utility

Pat Brown
EPRI
pbrown@epri.com

Jay Britton
Britton Consulting LLC
jay.britton@comcast.net